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Numerical Prediction of Vortical Flow over Slender

Delta Wings

J. A. Ekaterinaris* and Lewis B. Schiffl-

NASA Ames Research Center, Moffett Field, California 94035

Three-dimensional Navier-Stokes numerical simulations are necessary to correctly predict the complex lee-
ward-side flow characteristics over delta wings, including leading-edge separation, secondary separation, and
vortex breakdown. This article presents Navier-Stokes solutions of subsonic vortical flow over a 75-deg sweep
delta wing with a sharp leading edge. The sensitivity of the solution to the numerical scheme is examined using
both a partially upwind scheme and a central-differencing scheme. The effect of numerical grid density is also
investigated. An embedded grid approach is implemented to enable higher resolution in selected isolated flow
regions, such as the leeward-side surface flow region, and the leading-edge vortical flow region.

Introduction

HE main feature of the flow over delta wings at an angleof attack is the separated flow along the leading edges,

which form free shear layers rolling up around cores to form

leading-edge vortices. The leading-edge vortices induce ad-
ditional nonlinear lift, usually called vortex-induced lift. In-

crease in the angle of attack strengthens the vortices until

eventually a sudden change occurs in the nature of the cores.
This sudden change is known as vortex breakdown. In this

article vortical flowfields, with and without vortex break-

down, over highly-swept sharp-edged delta wings are inves-

tigated.

Due to its importance to aerodynamics, the vortex break-
down over delta wings was explored in early experimental
studies. L2 Vortex breakdown was studied in controlled ex-

periments on axisymmetric cylindrical vortices generated in

confined tubes. 3-6 Three types of vortex breakdown were ob-

served for a cylindrical vortex, 3 namely bubble breakdown,
spiral breakdown, and double helix breakdown. Changes in

the pressure gradient were found to have significant effects,

thus a pressure increase downstream drives the breakdown

upstream.

For flows over delta wings, bubble and spiral breakdown
are encountered, depending on the angle of incidence and the

sweep angle. Experimental studies of flows over a unity aspect

ratio delta wing 7 show that as the angle of attack increases,
bubble-type breakdown precedes spiral-type vortex break-

down. The large suction pressure of the leading-edge vortex
is diminished when vortex breakdown occurs with a subse-

quent loss of lift and nose-up pitching moment. After vortex
breakdown, the vortex core is not re-established and the

downstream end of the bubble usually is followed by a tur-
bulent wake.

Experimental studies s.9 for flows over delta wings included
surface and flowfield velocity and pressure measurements.
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Recently, computational investigations of flow about delta
wings at high angles of attack have been carried out 1°- 13using

Navier-Stokes numerical simulations. The agreement of these

numerical solutions with experimental data is good, and both
spiral- and bubble-type vortex breakdowns were predicted.

Previous numerical work, _°-n and the results of the present

investigation, show that high grid resolution is required to

resolve the complex leeward-side flow structure. The grid

must be clustered close to the body surface to resolve the
surface viscous flow. At high angles of attack vortex burst is

observed and the flow pattern in the breakdown region be-

comes more complex. Although vortex breakdown is not a

viscous-dominated process, grid resolution is required in the
breakdown region in order to capture small-scale details of

the flow, which otherwise are dissipated in a coarse grid. An

embedded grid approach was employed and a solution was

obtained with local grid refinement in the leeward-side region.
The objectives of the present work were to validate the

solution by comparison with experiments, to conduct grid

refinement studies, and to investigate alternative ways of ob-
taining accurate solutions with smaller computational effort

by means of local grid refinement. The effect of the grid

density on the numerical solutions was assessed. In addition,

two alternate finite difference schemes were utilized: 1) a
partially upwind scheme, and 2) a central-difference scheme.

Solutions were obtained with single-block and zonal grids.

Computational Method

The conservation law form of the thin-layer compressible
Navier-Stokes equations were used to obtain the numerical

solution. The governing equations for a curvilinear coordinate

system (£, r/, _'), are

o,Q_. + o_P + d,7¢ + 0_I:I = Re-lOc$ (1)

In Eq. (1) all geometrical dimensions are normalized with the

wing root chord length. The density is normalized with the

freestream density p_, and the velocities with the freestream
speed of sound a_.

The numerical integration is performed using both a par-

tially flux-split numerical scheme _4 and a numerical scheme

with central differencing in all three directions? ° The up-
winding is performed in the main flow direction with flux

vector splitting, while central differencing is used in the

other two spatial directions. The resulting two-factored
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algorithm is

[I + hr,(A+) " + hr_C" - hRe-'rcJ-aM_J - D_I¢]

× [I + hr_(A-)" + hr, B _ - D_T.]Aq_

= -bt{6_[(F+)" - F_] + 6_[(F-)" - F_]

+ 6.(G" - G.) + 6_(H" - H.)

+ Re-la¢(S n - S,)} - (Oel n q- Del¢) (2)

The central-differencing scheme employs the diagonalized form
of the Beam-Warming algorithm. The factorized form of this
numerical scheme is

(I + hreA" - D_le)(l + hr, B" - D_I.o)

× (I + hScC" - D_I _ - hRe-_rcJ-_M"J)Aq "

= -h(6_E" + 6,_F" + 6_G" - Re-_rcS ")

-- [D_le q- Dcl, + Delc] (3)

In Eqs. (2) and (3), De are the explicit dissipation terms that

are used along the directions where central differencing is

employed, and Di are the implicit dissipation terms that are

added for numerical stability. Steady aerodynamic flows at
moderate subsonic speed (M = 0.3), such as that of the

present study, do not contain shock waves and can be pre-

dicted quite well by a central-difference scheme, augmented
by dissipation terms. The dissipation terms used are a com-

bination of second- and fourth-order terms. The implicit and

explicit dissipation terms are computed as suggested in Ref.
15.

Grid Generation

A spherical-type grid (or C-O grid), and a cylindrical-type
grid (or H-O grid) were used. Sample spherical and cylindrical
grids are shown in Figs. 1 and 2, respectively. A three-di-
mensional hyperbolic grid generation technique 16 was used
for field grid generation. Both grid configurations provided
grid clustering along the axial direction, at the apex region,
in the trailing edge, and the near wake region (see Figs. 1

and 2). The grid points along the spanwise direction were

concentrated on the leeward side, especially in the vicinity of
the sharp leading edge. The grid was clustered normal to the

body surface to resolve viscous layers. The first point above
the body surface was located at a distance d, d = 0.00002

nondimensional unit lengths. The outer grid boundaries were
located 2-2.5 root chord lengths away from the body surface.

Only half-body solutions were obtained, with symmetry con-
ditions imposed at the angle-of-attack plane. The highest grid

Fig. 1 Spherical grid over delta wing.

Fig. 2 Cylindrical grid over delta wing.
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Fig.3 Cross-sectional view of the computational mesh demonstrating
the refined embedded grid and the interpolation points.

density used was 112 × 105 × 70 points along the axial _:,

circumferential 77, and normal _"directions, respectively. The

surface definition for the body used a bevel at the trailing
edge that was different from the geometry of the experimental
model.

Flows were computed with embedded grids using the chi-
mera scheme 17._8which enables solutions with several over-

lapping grids. A selected flow region of the overall physical

domain grid (global grid) in which higher resolution is re-

quired was identified and interpolated along one or all co-
ordinate directions. The resulting grid is called an embedded

grid. The cross-sectional view shown in Fig. 3 indicates the

overlap region between the two grids and the points which
were used to transmit information from one grid to the other.

The chimera scheme was also applied for zonal grids.

With the chimera scheme the governing equations are ad-
vanced in time sequentially, first for the global grid and then

for the embedded grid. The flow variables at the interface

boundaries are obtained by simple interpolation of the global-

grid solution. In those cases where some boundary of the
refined grid coincides with a physical boundary, such as a

solid wall, appropriate boundary conditions are applied. This

procedure is repeated and the solution is advanced in time
towards convergence to a steady state.

Results and Discussion

Computations were performed for flows over a 75-deg sweep
(AR = 1.07) delta wing. Flow measurements for this wing

geometry have been performed by Hummel s and Kjelgaard

and Sellers. 9 In both reports detailed results are available at
a = 20.5-deg angle of attack. Solutions were obtained at the
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experimental flow conditions for c_ = 20.5 deg and several

higher angles of incidence in order to investigate the effect

of the variation of the angle of attack on the flow structure.

Flow Without Vortex Breakdown

The solution for the flow at 20.5-deg angle of attack was

chosen to examine the effects of grid density, grid topology,

and the numerical scheme on the computed results. The zonal

and embedded grid approach results were also compared with

the single-block grid solutions. All computations for the 75-

deg sweep delta wing were performed (except where noted)
using the axially flux-split algorithm. The results were com-

pared with the available measurements of Refs. 8 and 9. In

Ref. 9, detailed off-surface laser Doppler velocimeter (LDV)

measurements were made in the BART facility at NASA

Langley on a 75-deg sweep model whose geometry matched
that of the present computations. Flow conditions were M_

= 0.3 and Reynolds number (based on root chord) Rec = 1

x 106. HummeP obtained surface pressure measurements on

a 76-deg sweep wing whose geometry was similar to the BART

model, differing primarily on the windward side near the trail-

ing edge. In Hummel's experiment the flow Reynolds number
was Rec = 0.9 x 106 (M_ _ 0.05). Since Reynolds number

has only small effects for a sharp-edged wing, and compress-

ibility effects are also small, Hummel's experimental results

were compared to computations made at Ms = 0.3 and Rec

= 1.0 x 106. The computed flow was assumed to be laminar.

A sequence of comparisons of the computed solutions with
the single-block, the zonal, and the embedded grid approach

was conducted in order to show the validity of these ap-

proaches for vortical flows over delta wings. The experimental

data and the computed solution with the finest grid density
were used for subsequent comparisons. The fine single-block

grid solution is validated first by comparison with experi-
mental measurements.

Comparison with Experiment

The accuracy of the numerical method is evaluated by com-

paring the results obtained with the finest (112 x 105 x 70

point spherical topology) grid for the flow at an angle-of-
attack a = 20.5 deg with available experimental data. The

computed surface pressure coefficients at different axial lo-

cations (x/c = 0.3, 0.5, 0.7, and 0.9) are compared with the
results of measurements from Ref. 8 in Fig. 4. Good agree-

ment was obtained for the windward-side flow except at the

location x/c = 0.9 where the geometry used in the numerical

simulation has a bevel at the trailing edge which does not
match the geometry of the experimental model. The com-

puted surface pressure coefficients at the leeward side show

an overall reasonable agreement with the results of measure-

ments except for the last station x/c = 0.9. The suction peak

caused by the primary vortex is closely predicted, while the
suction peak caused by the secondary vortex is overpredicted.
The discrepancy observed near the trailing edge (x/c = 0.9)

may be due to the differences between the computational and

experimental geometries, and the presence in the experiments
of leeward-side flow transition. Also shown in Fig. 4 is the

computed leeward-side pressure distribution of Ref. 11, at

x/c = 0.5, obtained using a 65 × 129 × 65 point grid. This

solution shows the same trends as those of the present solu-
tion. Reasonably good agreement is found between the com-

puted and experimental results for this case at all axial stations

(with the exception of x/c = 0.9). Therefore, in examining
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Fig. 5 Axial velocity contours in the _ = const crossflow surface at
x/c = 0.9: M_ = 0.3, o_ = 20.5 deg, Re c = 1 x 106, with 112 x 105
× 70 spherical grid: a) measured, 9 b) computed.
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Fig. 6 Helicity contours in the _ = const crossflow plane at x/c =
0.9:M_ = 0.3, a = 20.5deg, Rec = 1 × 106, with 112 x 105 × 70
spherical grid.
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the effect s of grid resolution, zonal grids, grid topology, and

the numerical algorithm on the computational results, we fo-
cus on the behavior of the two solutions at x/c = 0.5.

The off-surface axial velocity distribution predicted from

the 112 × 105 × 70 spherical grid solution in a crossflow

plane at x/c = 0.9 is compared with results of the measure-
ments of Ref. 9 in Fig. 5. The location of the vortex core is

predicted closely, and the computed axial velocity distribution

closely matches the experimental results. The computed re-

sults are shown in a normal _: = const surface. The other two
velocity components (not shown here) also agree with the

experimental results. The overall view of the vortical flow
over the leeward side at the same axial location x/c = 0.9 is

shown in Fig. 6 using helicity contours. A good representation
of the vortical flowfield can be obtained by use of the helicity

density, as was discussed in Ref. 19. Helicity H is a scalar,

the inner product of the velocity and vorticity vectors H =

V. _. The helicity contour plot shows the extent of the vortical
region and the vortex core as the location where the helicity

attains a local maximum value. The helicity contour plot of

Fig. 6 shows the extent of the vortical field and the primary,

secondary, and tertiary vortex cores. In addition, the sec-
ondary and tertiary separation lines are indicated by sign re-

versal of the helicity at the body surface (here negative helicity

values are shown with dashed lines).

Effect of Grid Resolution

The results obtained with the finest 112 x 105 x 70 point

spherical single-block grid adequately capture the important
flow characteristics and agree with the experiments. It is im-

portant to have a grid fine enough to resolve the pertinent

physics while keeping the total number of points to a minimum

due to long execution time requirements. Comparisons of the

solutions obtained on the largest 112 x 105 x 70 point spher-
ical topology grid and a grid having a reduced axial resolution

of 56 x 105 x 70 points do not indicate differences in the

flowfield structure. The surface pressure coefficients of both
solutions at x/c = 0.5 are shown in Fig. 7, and are in good

agreement. Doubling the grid resolution in the axial direction

from 56 to 112 is not expected to have a very significant effect

on the accuracy of the solution, because at this moderate angle
of attack the flow is approximately conical, and therefore, the

axial gradients are small. The surface pressure coefficient at

x/c = 0.5 predicted by the solutions with coarser spherical

grids are compared in the same figure with the fine-grid results
and the experiments. The solution obtained on a 56 x 54 x

70 point grid shows some differences from the finer grid res-

olution results. The need for adequate grid resolution in the
body normal direction is particularly critical. The deviation

from the measured values is larger for grids having coarse

normal resolution and the suction peak due to the secondary

• Measured, Ref. 8
Computed

_ 112 x 105 x70

1.5 r --- 56x105×70
/ ....... 56× 54x70

1.0 L .... 56x 54x35 _J

I I I I I I

t_ -.5 0 .2 .4 .6 .8 1.0

Spanwise location (s = Y/Ymax)

Fig. 7 Effect of the grid density on the prediction of surface pressure
coefficient: M= = 0.3, a = 20.5 deg, Rec = 1 x 106.
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I I I I I

.2 .4 .6 .8 1.0
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Fig. 8 Surface pressure coefficient: Ms = 0.3, e_ = 20.5 deg, Rec
= 1 x 106, with 112 x 105 x 70 spherical single-block and zonal
grids.
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Fig. 9 Computed pressure field in a longitudinal cross section ap-
proximately through the vortex core: M= = 0.3, o_= 20.5 deg, Rec
= 1 x 106:a) 112 x 105 x 70 spherical single block grid, b) 112 x
105 x 70 spherical zonal grid.

vortex is not predicted. These comparisons indicate that the

56 x 54 x 70 point grid provides sufficient resolution and

accuracy. Therefore, this grid density was used as the basis
for comparisons in the rest of this section.

Zonal-Grid Solutions

For the zonal solution the flow domain was divided into

zones by partition of the single-block grid starting from the

apex and progressing to the trailing edge and the wake. At
the interfaces between the zones the grids overlap by one

point and they are aligned so that simple injection of boundary

information can be used. The solution is advanced one step

in the zone at the apex and progresses sequentially from zone
to zone until the entire domain is swept. This process is re-

peated in time until convergence of all zones to a steady state
is achieved.

The boundary data are transferred at the interfaces explic-
itly, and only first-order accuracy is retained at these regions.

Transfer of boundary information at flow regions with steep

gradients may cause instabilities and discontinuities when large
time steps are used. In fact, it was found that the zonal grid

solutions required smaller time steps than the single-block
solutions in order to retain stability and exhibited slower con-

vergence rates. However, the converged zonal solutions did

not have discontinuities, and in terms of accuracy were in

agreement with the single-block results. This is demonstrated
by the surface pressure distributions shown in Fig. 8 where
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results obtained in the single-block 112 × 105 x 70 point the solution. Therefore, differences between the computed
spherical grid and the analogous zonal grid are compared, pressures on spherical and cylindrical grids are due to the

The surface pressure coefficient at x/c = 0.5 are in very close different approximation of the sharp leading-edge geometry
agreement. The surface flow patterns (not shown) obtained and different spatial distributions of grid points for each grid
with the zonal grid were also in good agreement with the configuration.

patterns computed on the same size single-block grid. The computed off-surface axial velocity components are

An important consideration for judging accuracy and va- presented in Fig. 11 and may be compared with the experi-
lidity of the zonal solution is the smoothness and accuracy of mental results of Ref. 9 shown in Fig. 5a. It is observed that

the solution at the zone interfaces. The continuity of the zonal the location of the primary vortex core was predicted closely

grid solution is shown in Fig. 9, which presents off-surface with the cylindrical zonal grid solution, and the computed
pressure contours on an 7/ = const grid surface which passes axial velocities match the experimental results. Solutions on

approximately through the vortex core starting from the apex cylindrical grids showed slightly slower convergence rates

and extending to the trailing edge. In Fig. 9a the pressure compared with the solutions on comparable size spherical
field of the solution obtained on the single-block grid is shown, grids. The slower convergence rate on the cylindrical grids

In Fig. 9b the corresponding zonal-grid solution is shown can be attributed to the high grid clustering at the apex region.
where the locations of the zonal boundaries are indicated by

dashed lines. The two field solutions are seen to be in good Effect of Numerical Algorithm
agreement. The sensitivity of the solution on the numerical scheme is

examined next. The pressure coefficient at the axial location

Effect of Grid Topology x/c = 0.5 obtained using the central-difference diagonalized

The effect of the grid topology on the solution is examined scheme 1° is compared with the pressure coefficient predicted

next and the solutions obtained on spherical and cylindrical using the axially flux-split scheme ]4 in Fig. 12. Both solutions
grids are compared. The surface pressure coefficients at x/c were obtained on a 56 × 54 x 70 point single-block spherical

= 0.5 obtained using the cylindrical grid topology are com- grid. The surface pressure coefficient prediction using the

pared to these obtained using a spherical-type grid in Fig. 10. diagonalized scheme shows general agreement with the mea-
The spherical grid was a 56 × 54 x 70 point single-block surements and with predictions of the axially flux-split scheme,

grid, while the cylindrical grid was a 57 × 54 x 70 point for the spanwise locations from the centerline to the location

zonal grid. For most of the spanwise locations the pressure of the suction peak due to the primary vortex. The solution
coefficient computed on both type grids agree with each other

and with the experiments. However, at the leading edge, 0.95
<-- Y/Ymax -_< 1, discrepancies are observed between the two o 1.5
computed solutions. Similar trends are observed for the other _ • Measured, Ref. 8

axial locations. In the previous paragraph it was shown that _ ..... Central diff. _" .,,"lllxlll
1. _ . . ml iii -..

the zonal solution method has little effect on the accuracy of i iy_1.5 [ • Measured, Ref. 8 P
[ ..... 56 x 54 x 70 sph. grid _=

¢aI _57x54x7

•_ 1.0 ..:: o. 0

..................................
= .5 _'" t_ -.5 i l i i l0 .2 .4 .6 .8 1.0
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0 _._ Fig. 12 Effect of the numerical scheme on the prediction of surface

o • ..................................... pressure coefficient: M_ = 0.3, a = 20.5 deg, Rec = 1 x 106, solutions---41"11"

1: on 56 x 54 x 70 spherical grid.
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Fig. 10 Effect of the grid topology on the prediction of surface pres-
sure coefficient: M_ = 0.3, a = 20.5 deg, Re c = 1 x 106.
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Fig. 11 Computed axial velocity contours at x/c = 0.9: M_ = 0.3, Fig. 13 Helicity contours computed with central-difference diago-
= 20.5 deg, Re c = 1 x 106, with 57 x 54 x 70 cylindrical zonal nalized scheme in the _ = const crossflow surface at x/c = 0.9: M_

grid. = 0.3, o_ = 20.5 deg, Re c = 1 x 106.
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with the central-difference scheme did not predict the same
location and strength of the suction peaks as the axially flux-

splitting scheme.

Figure 13 shows the helicity contours in £ = const surface

at x/c = 0.9. The location of the primary vortices of both
solutions are generally in good agreement. However, the sec-

ondary vortex obtained with the central-difference solution is
located farther outboard and closer to the surface than that

of the flux-split solution. The differences in the near-wall flow
characteristics can be attributed to the different diffusive char-

acters of the two algorithms used.

Embedded-Grid Solutions

Large portions of the flowfield, such as the windward side

flow, are not particularly sensitive to the grid resolution. The

basic idea in obtaining solutions with reduction in computing

cost, while retaining adequate resolution in critical flow re-

gions, has been to partition the complete domain of the prob-
lem into several subdomains. Although it is possible to use

partitions intersecting only at the boundaries in the present

work, it was decided to use subdomains which overlap. Phys-

ical considerations of the flowfield of the present investigation
required the use of grid embedding rather than general grid

partitioning. The global grid contained 56 x 54 × 35 points
and only a portion of this grid on the leeward side was refined

along all three coordinate directions. The refined embedded

grid (see Fig. 3) included the region of the leading-edge vor-

tices and it extended radially several grid cells beyond the

oD- 1.5

•_ 1.0

9 .5

o. 0

U

1:
= -.5
¢n 0

[] Measured, Ref. 8
--- Embedded

• ....

......... mm........ m_ ........ _ ........ l-- ........ U"

I I I I I

.2 .4 .6 .8 1.0

Spanwise location (s = Y/Ymax)

Fig. 14 Surface pressure coefficient with the embedded grid solution:
M_ = 0.3,¢x = 20.5deg, Rec = 1 × 106.
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z/c

0
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.1 .2 .3

y/c

Fig. 15 Helicity contours computed with embedded grids, in the _:
= const crossflow plane at x/c = 0.9: M_ = 0.3, _ = 20.5 deg,

Rec = 1 x 106.

vortical flow region where significant density and velocity
variations are encountered. The portion of the leeward side

region with significant density and velocity gradients can be

identified by examining the flow solution on the coarse grid.

The embedded grid extended spanwise on the leeward side
from the symmetry plane to the leading edge. The size of a

single-block grid having the equivalent grid resolution of the

embedded grid throughout the flow region would be 112 x

105 x 70 points. By using a coarse 56 × 54 x 35 point global
and a 80 × 55 x 59 fine embedded grid, the total number

of grid points of the global and embedded grid is 2.25 times

less than the size of the single-block 112 x 70 grid.
The surface pressure coefficient at x/c = 0.5 is shown in

Fig. 14, together with the solution obtained with the 112 x

105 x 70 point single-block grid. The surface pressure coef-

ficient obtained using the baseline 56 x 54 x 35 point grid

is also shown. The pressure coefficient obtained by the
embedded solution method improved the prediction of the
coarse global grid solution, but it did not match the corre-

sponding fine single-block grid solution prediction. The strength
and the location of the suction peaks obtained by the embed-

ded grid solution agree with the results obtained with the

single-block fine grid solution. However, the surface pressure

distribution predictions do not agree for spanwise locations

between the suction peaks. It is speculated that closer agree-
ment of the single block and embedded grid solutions would

have been obtained if the embedded grid had included part

of the leading-edge region on the windward side and part of
the wake region. Note also that in Ref. 20, where a grid

refinement was employed with another method, a larger part
of the leading-edge region was refined.

Comparison between crossflow heticity contours of Fig. 15

and those shown in Fig. 6 demonstrates that the off-surface

flow predictions of velocity and density obtained by the
embedded and single-block grid solutions are generally in

good agreement. The location of the primary vortices ob-

tained by the embedded grid solution agrees closely with those
obtained by a single-grid solution and with the location ob-

tained experimentally.
The flow structure of the leeward-side vortical fiowfield has

two regions which would require fine grid resolution: the
boundary-layer region and the vortical flow region including

the shear layers emerging from the leading edge. It is possible

to refine each of these regions individually. This approach
was tried, but the convergence rate was slow, and the flow field

was not smooth at the interfaces of the grids. This was due

to the inaccuracy of the interpolation in regions where the
flow quantities have rapid spatial variation. Grid refinement

for the entire flow region starting from the leeward side sur-
face, and including the leading-edge vortices, was chosen be-

cause the interpolation from the global to the refined grid is

applied only at the far field where the spatial variation is
insignificant.

Flow with Vortex Breakdown

In this section, flows are examined at higher angles of attack
where vortex breakdown was observed. The solutions for flows

with breakdown were also computed at a freestream Mach

number M = 0.3, and Rec = 1 x 106. Detailed experimental
data are lacking for flows with vortex breakdown. Most ex-

perimental investigations have simply identified qualitative
features of the flowfield such as location and extent of vortex
breakdown. The numerical solutions indicated that vortex

breakdown appears first at an angle-of-attack c_ = 32 deg, as
was observed in the experimental investigation of Ref. 21.

Computed Results: c_ = 32 deg

The flow for a = 32 deg was computed on a 57 x 54 x

70 point cylindrical grid with the zonal method. The general

flowfield characteristics and the vortex breakdown region are
shown in Fig. 16. Also shown in Fig. 16a are the pressure

contours on the wing surface which indicate the locations of
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the primary and secondary suction peaks. The vortex core is

shown by streamlines starting from the wing apex, and the
approximate shape of the vortical region near the core is

shown with the stream surface originating from the leading
edge upstream near the apex. The vortex breakdown is shown

with the stream surface which has a closed front end (Fig.
16b), indicating the leading edge of the vortex breakdown

bubble, and its continuation in the wake. The close-up view
shown in Fig. 16b clearly illustrates how the core of the vortex

expands and how the flow is diverted downstream of the

vortex burst point. It can also be seen in Fig. 17 that the

vortex breakdown bubble remains open in the wake region.

The vortex breakdown region can be identified using helicity.
At the flow reversal region the helicity (H = V._) changes

sign, but also the angle between the velocity and vorticity
vectors changes significantly compared with the unburst vor-

tex case. In Fig. 17 the vortex breakdown region in a crossflow

plane at x/c = 0.95 is identified using the contours of helicity.

In the region after breakdown, sudden tilting and rotation of
the streamlines causes the angle between the velocity and

vorticity vectors to exceed 90 deg. As a result, in the vicinity

_..S_ f ........ ..

[ii

b)_'-

Fig. 16 Vortex core and vortex breakdown region indicated with
particle traces: M_ = 0.3, ot = 32 deg, Re c = 1 x 106: a) perspective
view and b) detail of the vortex breakdown bubble.
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Computed helieity contours in a cross section through break-Fig. 17
down atx/c = 0.9:Ms = 0.3, tr = 32 deg, Re c = 1 x 106, with
57 x 54 x 70 grid.

of vortex breakdown the helicity can be negative, even in

regions where the velocity vector points downstream and pos-

itive in regions where the velocity vector points upstream.

Computed Results: a = 40 deg

The computed flow for a = 40 deg is presented in Fig. 18.
Except where otherwise noted, these results were obtained

using a 112 x 105 x 70 point spherical single-block grid.

Solutions were also obtained using smaller single-block grids,

and the same trends discussed above for the a -- 20.5-deg

case concerning sensitivity of the solution to grid density also
occur at c_ = 40 deg.

The vortex breakdown region for a = 40 deg is shown in

Fig. 18 using particle traces. Comparing Figs. 18 and 16, we
see that at this angle of attack, the vortex burst point is located

further forward than at a = 32 deg, and the vortex burst is
larger.

Vortex breakdown was observed in the solutions for the

75-deg sweep delta wing at a -> 35 deg using grids having a
resolution as coarse as 33 x 54 x 35 points. However, the

coarse grid solutions tend to predict the vortex burst point
further downstream, and a smaller extent of vortex break-

down region than the corresponding fine-grid solutions. Fur-

thermore, when the grid resolution was made even coarser
(33 x 30 x 35 point grid) the vortex breakdown was not

observed in the computed solution. These results indicate that

the ability to capture vortex breakdown requires a grid fine
enough to resolve the features of the off-surface vortex struc-

ture, as well as the viscous layers at the body surface.
An important feature governing the occurrence of vortex

breakdown on delta wings is the interaction of the vortex with

the adverse axial pressure gradient encountered at the wing
trailing edge. This sensitivity has been demonstrated in ex-

periments where the downstream pressure has been altered,
and was also found in the computations. Vortex breakdown

was not obtained when the computational grid excluded the

wake region, and thus the adverse pressure gradient devel-
oped by the flow downstream of the wing was not present.

Similar results were found 22 in computations of flow over an

aircraft fuselage and wing leading-edge extension at high in-
cidence.

A time-accurate solution was carried out for the a = 40-

deg case to investigate possible existence of unsteadiness in
the region downstream of the vortex burst point. The solution

obtained on the 112 x 105 x 70 point grid was advanced a

large number of time steps and the solution examined for

Fig. 18 Vortex core and vortex breakdown region indicated with
particle traces: M_ = 0.3, ct = 40 deg, Rec = 1 x 106: a) perspective
view and b) detail of the vortex breakdown bubble.
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Re c = 1 x 106, with 112 x 105 x 70 spherical single-block grid.

evidence of unsteadiness. In the present case the vortex was

observed to undergo a bubble-type breakdown, and no un-
steadiness was observed in the residuals or in the computed
lift or pitching moment. In addition, the computation carried
out for a very similar delta wing configuration using a flux-

vector-splitting algorithm it did not reveal the existence of
unsteadiness in the computed results. However, numerical
investigation of flow over a bubble-delta wing configuration, 1°
where spiral type of vortex breakdown was observed at a =

35 deg, identified self-excited unsteady flow behavior in that
case.

The effect of variation of the angle of attack and the de-

velopment of vortex breakdown on the aerodynamic behavior
of the delta wing can be shown by inspection of the surface

pressure distribution. Computed surface pressure distribu-

tions at several axial locations for the 112 × 105 × 70 point

grid solution at a = 40 deg are shown in Fig. 19. Comparison

of these surface pressures with the corresponding ones for

= 20.5 deg (Fig. 4) gives quantitative information of the effect
of vortex breakdown. At x/c = 0.5, upstream of the break-

down onset, the suction peak is significantly higher than the

one at a = 20.5 deg. Vortex breakdown results in significant

diminution of the primary suction peaks; the computed sur-
face distribution at x/c = 0.7 and x/c = 0.9 clearly demon-
strates this effect.

Conclusions

The flowfield about a 75-deg sweep delta wing was com-

puted for a range of incidence. At _z = 20.5 deg the solutions
did not exhibit vortex breakdown, and the results were in

reasonable agreement with the experiment. It was found that

sufficient grid density is required normal to the body surface

to resolve the viscous layers adjacent to the body and the
leeward-side vortex structures. Solutions were computed with

zonal grids and the results were in good agreement with so-

lutions computed on analogous single-block grids. It was found

that the grid topology has no significant effect on the accuracy
of the solution. The numerical scheme has an effect on the

prediction of surface properties and the off-surface field so-
lution. The results of the embedded grid solution were not in

perfect agreement with the solutions obtained on fine single-

block grids that provide the same resolution as the refined

embedded grid, but they improved the solution of the coarser

global grid at a smaller computational cost. At higher angles
of attack, the computed solutions exhibited vortex break-

down. Bubble-type vortex breakdown was found for the 75-

deg sweep delta wing and for angles-of-attack 32 deg --<c_ -<

40 deg. Vortex breakdown was predicted on coarse- and fine-

grid solutions. However, adequate grid resolution was found

to be important in predicting the correct size and location of
the vortex breakdown bubble. The computed flowfield for
flow with vortex breakdown did not show unsteadiness even

for the finest grid resolution used.
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